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We solve the queueing system C,/C../s. where C, 15 the class of Coxian probability density functions (pdfs) of order £,
which is a subset of the pdfs that have a rational Laplace transform. We formulate the model as a continuous-time,
infinite-space Markov chain by generalizing the method of stages. By using a generating function technique. we solve an

infinite system of partial difference equations and find closed-form expressions for the system-size, general-time, prearrival,
post-departure probability distributions and the usual performance measures. In particular, we prove that the probability
of n customers being in the system, when 1t is saiurated is a linear combination of geometric terms. The closed-form
expressions involve a solution of a system of nonlinear equations that involves only the Laplace transforms of the
interarrival and service time distributions. We conjecture that this result holds for a more general model. Following these
theoretical results we propose an exact algorithm for finding the system-size distribution and the system’s performance
measures. We examine special cases and apply this method for numerically solving the C,/C,/s and E./Cs/s queueing

systems.

ucuecing theory has been studied thoroughly
throughout this century, but many problems
still remain unsolved, in spite of the effort and intel-
ligence devoted to them. Among these problems, the
analysis of the GI/G/s queucing system (QS) has
survived the attacks of many excellent mathemati-
cians and operations researchers, obviously due to its
inherent complexity.

In this paper, we generalize the method of stages,
introduced early in the century by Erlang, and com-
bine it with a generating function technique to achieve
the solution of the general class of problems C,/C,,./s,
where C, is the Coxian class of probability density
functions (pdf) with n stages introduced by Cox
(1955).

A Brief Critical Presentation of Alternative
Solution Methods

When it comes to exact solutions of multiserver QSs,
the more one departs from the assumption of expo-
nentiality, the more thorny the problems become,
especially if this happens for the service time pdf or,
worse, for both the service and arrival-time pdf. Thus,
the only solution approaches that have been estab-
lished up to now as supposedly general purpose are

1. embedded Markov chain,
2. inclusion of supplementary variables,
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3. complex variable theory,
4. the method of successive exponential stages.

For an excellent survey of computational methods
for the GI/G/s queue, the interested reader can turn
to Tijms (1986). Several discussions of the major
computational problems arising in the numerical so-
lution of multiserver queues with nonexponential
service time also can be found in Yu (1977) and Neuts
(1981). Some further remarks on the application of
these solution approaches to multiserver models and
on their inherent potential to produce theoretical and,
especially, exact numerical results (which should be
their ultimate goal), are included below.

The Embedded Markov Chain Method

In the past decade, it was mainly Neuts and his co-
workers who exploited the phase-type (PH) distribu-
tion and developed the powerful formalism of the
associated matrix-analytic methods and algorithmic
approaches (as presented in Neuts), and managed, by
bridging this method with the method of stages, to
considerably extend its potential. Yet, for multiserver
systems with nonexponential service times the rele-
vant solutions, although providing qualitative insight,
lead to major dimensionality problems. For the
C./C,./s model, this approach requires the solution of
a nonlinear matrix equation involving matrices of

0030-364X/90/3801-0139 $01.25
© 1990 Operations Research Society of America

Copyright © 2001 All Rights Reserved



140 / BERTSIMAS

the order (**7~!). Ramaswami and Lucatoni (1985)
extended the potential of the method by devising
efficient algorithms for solving the nonlinear matrix
equations involved. For the H, service time pdf they
reported numerical results when the number of servers
was 15.

The Inclusion of Supplementary Variables Method

Despite the initial expectations concerning its capa-
bilities, the method has been used for multiserver
systems in a limited number of analytic investigations
and numerical implementations. In the last decade,
Ishikawa (1979) tried to tackle the G/E,./s system
through this method, but restricted his attention to
the G/E;/3 system. In parallel, Hokstad (1980) tackled
the M/C,/s system, and after various simplifications
presented limited results for s = 3. Finally, Cohen
(1982) analyzed the M/H,,/2 system.

The Complex Variable Theory Method

This method was developed by Pollaczek (1961) and
played an important role in the development of
queueing theory. In recent years, the method was
exploited by de Smit, who proposed a method for
G/H,./s (de Smit 1983a). This approach needs deep
arguments from complex variable theory, leading to a
numerical solution in the G/H,/s case (de Smit
1983b), but with a high computational complexity
that is proportional to s°, to be compared with O(s?)
of the present method.

The Method of Successive Exponential Stages

Erlang’s method of stages has been neglected for some
time, obviously because of researchers’ concern about
the fact that it leads to systems of equations which
usually are complicated, but certainly not more for-
midable than those of the previous methods, and
become almost intractable if one attempts to tackle
them directly by various seemingly powerful tech-
niques. For example, in the E,/E,./s case this intract-
ability is apparent both in many of the earlier attempts
at an exact solution via multidimensional generating
function techniques, and in Yu’s ambitious theoretical
treatise via an intricate partitioning of the system-
states and an exploitation of the cyclic structure
(exhibited by the corresponding transitions) through
the use of polynomial matrices.

In particular, for the latter approach (see, e.g., Hillier
and Lo 1971, Hillier and Yu 1981), the computations
necessary for the derivation of numerical results in-
volve the numerical expansion of such matrices, which
is an enormous task even for moderate values of &, m

and s. The above mentioned attitude is reflected in
the comments of Kleinrock (1975, pp. 146-147). In
addition to the above, the Laguerre transform method
of Keilson and Sumita (1981) is worth mentioning.

Our Result

Our result generalizes the well known GI/G/1 theory
to multiserver systems in a natural probabilistic way
and leads to an algorithm of a relatively low order of
complexity. On the other hand, in comparison to the
purely numerical methods of Takahashi and Takami
(1976) (which was recently specialized by Groenevelt,
Van Hoorn and Tijms (1984) for the solution of the
simpler models M/H,/s, M/E,./s, M/E,s/s) and
Seelen (1986), the present approach offers qualitative
insight by providing closed-form expressions, which
apart from their computational value, are also of
theoretical interest. Furthermore, our solution strategy
leads to an exact waiting time analysis under FCES,
to be presented in a forthcoming paper.

We propose an O(k*(**77')®) algorithm for the
calculation of the performance measures and the prob-
ability distributions of this QS, which for a given m is
polynomial in the number of servers. To properly test
the potential and reliability of this algorithm, we pre-
pared computer programs for the numerical solution
of the QSs E,/C,/s and C,/C,/s. These exact results
are in agreement with others in the literature and can
be exploited for the always desirable sensitivity analy-
sis and comparative evaluation in the continuously
active areas of approximations, inequalities, bounds
and stochastic order relationships for multi-
server models, on all of which there is a rapidly
increasing literature.

In the next section, we formulate the model as a
continuous time Markov chain using the method of
stages. In Section 2, we apply a generating function
technique for solving the difference equations that
describe the system. In this section, which is central
to the analysis, we combine results of the complex
variable method developed by Pollaczek (1961) and
de Smit (1983a) with results of the present paper to
prove what we call the separability property: The
probability of n customers (n = 5) being in the system
is a linear combination of (**7"~') geometric terms. In
Section 2.5, we examine the QSs C,/C,./1, Ci//M/s,
E./E,./s and E;/C./s as special cases.

The derivations of closed-form expressions for the
system-size probability distributions and the usual
performance measures are outlined in Section 3. In
the final section, we include some computational and
complexity considerations.
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1. FORMULATION OF THE MODEL AS A
CONTINUOUS-TIME MARKOV CHAIN

We assume that both interarrival and service times
are Coxian with k, respectively, m stages. This means
that an arrival has to go through up to k stages. The
length of stage # is exponential with a given rate A,.
After stage n, n = 1, 2, ..., k, the interarrival time
comes to an end with probability p,, and it enters the
next stage with probability 1 — p,. Obviously, p, = 1.
A similar characterization is available for the service
time, except that the symbols u, and ¢,, n =1, . ..,
m take the place of A\, and p,. The Laplace transform
of the pdf of the interarrival times is then

k n—1
pn>\n (1 _ pr))\r
* 8) =
f7a() n§16+xnrl—=11 0+'\r

where the product for #n = 1 is defined to equal 1.

It is remarkable that even if we permit transi-
tions from a stage with rate A, to a stage with rate A,
(j # i + 1) we do not obtain a new class of distri-
butions. We can still formulate this situation with a
Coxian distribution with different transition rates. The
salient feature of the class of Coxian distributions (C,)
1s its high versatility based on its ability to

1. generalize well known distributions such as the
exponential, the hyperexponential and all forms
(that is, special, general, weighted, compound, etc.)
of the Erlangian;

2. be dense in the set of all probability distributions
concentrated on (0, o) and, thus, to be able to
approximate a general pdf;

3. permit coefficients of variation V? greater
than 1/n.

1.1. Notation

For the steady-state we introduce the random variables

N A the number of customers in the system,
N~ & the number of customers seen by an arriving
customer just before arrival,
N7 A the number of customers seen by a departing
customer just after departure,
R, & the number of the arrival stage currently occu-
pied by the arriving customer,
R, 2 the number of customers served at the jth

service stage (j=1,2,..., m),
R; & the number of customers served at the jth
service stage (j =1, 2, ..., m), just before the

arrival of an entering customer,
T, & the waiting time of an arriving customer.
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For simplicity of notation we introduce the vectors of
random variables

RA2(R,,...,R,), R ART,...,R;)

and also we use the notation
54(,...,0,1,0,...,0)

s+ m-—-1
s

a(s, m)é(
I (T

m
[{]| =s& ) i=os.
=1

With these definitions, the system can be formulated

as a continuous time Markov chain with infinite state-
space

{(N,RG,RI,...,R,,,),NZO, 1,~--,

R,=1,2,...,k Y R = min(N, s)}

J=1

where the states with NV < s (that is, the states with at
least one server free) and N = s (or all servers busy)
will be termed unsaturated and saturated, respectively.

We will introduce the following set of probabilities,
some of which will be used in later sections.

P iAPt{N=nR,=1 R=1}
PiiAPN =n R =i}

P, A Pr{N = n}
P, APr{N~ = nj
P APrNY =n).

We also define

J70), [1(0)

2 the Laplace transform of the interarrival and
service time distributions, respectively.

As usual, A is the arrival rate, u the service rate, and
p = M\/su is the traffic intensity.

1.2. The Equations

After drawing the rather complicated state-transition
diagram in Figure 1 (forthecase /=2, ..., k, n=s,
the case / = 1 is similar) we write the following system
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(1=pi-1)M-2
qpfs +1)

(n+1,L,7+6 - 6)
17=2,....,m

(1- ), (s, +1)

(n i+ 6~ 63)

(n-1,
7=1...,m y

i=1....m

[ AN (1-g))uy,

Li+6-8)

of equations

"

+ 2 qu‘J(l.j + 1)Pn+l,1.;+<§,*51
=2

Mz

+ 1 (1 =g, + DPuiivi-s,, (1)
s
b. [=2,...,k
=1 = pro)A=1 Prmri + qrunis Povrns
+ 22 QG+ DPpisivs-3,
=
+ i (1 = g, + DPusivi-i., (2)
=
n<s, |i|l=n

a. [=1
Pnl; )\1 + E ij“j}
Jj=1
A m
= 2 pl}\[Pn—I.l.f -+ Z qlﬂj(ij + I)Pn+l I.f+5j
=1 J=1
+ 2 (=gl + DPyiivis,, (la)
J=1

b. I=2,...,k

A/ + Z l.j[.l.j

=1

Pn,/,r'{ }

= (1 - p[—l)>\l—11)n,/—l.1~ + Z qjlu‘](i_l + I)Pn+l,l.f+a;

J=1

m

+ 2 (1= gl + DPyivi-

K
=1

. (2a)
P,; js taken to be 0 if some component of / is negative
or | 7| # min(n, s). Also, since g,, = 1 the last sum of
the right-hand side of (1), (1a), (2), and (2a) can be

extended to m instead of m — 1.

2. ANALYSIS OF EQUATIONS

2.1. Separation of Variables Technique

Initially, we consider the infinite number of equations
(1) and (2) for n = 5. We use a familiar technique
from the theory of partial differential equations (see,




for example, Mathews and Walker 1970, p. 226),
which is less well known for partial difference equa-
tions, the separation of variables technique. This tech-
nigue is presented in Mickens (1987, p. 186) and it is
used in queueing theory applications in Morse (1958,
p. 68), although the name separation of variables was
not used in Morse. We adopt it here because it char-
acterizes the technique well. We assume that the sat-
urated probabilities are of the form

Pi=DRiw" nz=s.

We need to determine D;, R; and w. There will be
several values for w, which lead to different D, and
R;. These values can be combined, using the initial
conditions. Obviously

m

R;=0 for ) i #s

1=1

or
<0 forsomej=1,...,m
From (1) and 2) we get forn = s

I=1, |i|=s

D.R,"{)xl + i i,u,}

7=1

- .
= Y NDR; + wq i Dy R;

=1

m

+w X gu,+ DR,

J=2

m

+ X (=g, + DD Ry 5., (3)

=1

=2, ...k |il=s

D/Ri‘]lr)\l + E l-;lb}

J=1

=1 = p)N1 D Ry + wq 1, D R;

+w 2 QJﬂj(ij + I)D{R;’L‘S‘/‘gn

=2

m

+ 2 (1= g)m(, + DD Rixi-,,- )

J=1
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(4) can be written

DN = (1 = pr)Na Dy
D,

N [qulllilR[ +w Z qu + I)R"H'fgx

=2

+ Z (l - QJ):LLJ(Z‘j + I)R“'*‘;/*‘;JH (5)
J=1

- R; z ijﬂj]/Rf-
J=1

Since (5) holds for any combination of / 2 2 and l,
| f| = g, we apply it for the pairs (2, f), (L f), cey
(k, D), that is, we keep I fixed and vary /. In this way
we obtain

Doy = (1 = p)\ Dy _
D,

- DN — (1 = pr)Na Dy -
D,

- D — (1 = pro )M Dy
D, )

As a result

DN = (1 = pry)A-i Dy
D,

is independent of /. Similarly, if we keep / fixed and
vary {, we obtain that

I:qu[.l,lilR; + w Z QJN‘J(IJ + 1)Izl“"‘i’gl

=2

+ X (1= @i, + DRivi-5., — R X z;u,] / R;
=1 =1
is independent of i. Therefore, there exists a constant
x, which depends on w, but is independent of / and /
such that

DAy = (1 — pro)hoi Dy -
D,

= [qumilR; +w X qu(i, + DR,

=2

+ 2 (1 — gy + DRs—5,, — Ri Z i/#/]/Rf

=1 1=1
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and hence

Dy —( —pNDy=—=xD; 1=2,....k (6)

wqu L Ry + w 2 q,( + 1)R5+"7J’51

J=2

+ Z (1 — g + I)Rf+5,—5],,
J=1

m

—R Y iw=-xR;, |il=s5 (7)
J=1
Solving (6) we find that
-1
I >\r
p=p, [ &= 5k (8)

r=1 X + >\r+1
Substituting (8) to (3) and using (7) we find the
relation between x and w

A I~1
_ p[>\l (1 — pr)>‘r Lk
W_ZIIX"'}\/,[I] Py = fT.(x). 9

2.2. A Generating Function Technique

Equations (7) form a linear homogeneous system of
(**7~") equations with (**7~') unknowns. Since the
system is homogeneous, w must be chosen such that
the determinant of the system is zero. Since (**77 ") is
large, a direct determination of the values of w with
this property is computationally unattractive. We,
therefore, use a different method, and introduce the
m variable generating function
UGEZ)4& Y Rizv ...z,
[7]=s
[=( . yin), 2=(21, .00 Z0).

Multiplying (7) by z ... z!z and summing for all ,
| ] = s we get the following partial differential equa-
tion of the first order

- U(2)
2 dz,

J=1
= xU(2). (10)

(’u,ij - WZiq,u, — (1 - QJ)/LJZJ‘H)

For the derivation of (10) we use the identities

al(2) .
zZ,—— = Rz ... zn»
J (92] |i|2=\ el
alU(z
z, —a—_(,z—) = ) Rz + Dz ...z,
<y |il=s

r=1, j+ 1.

Our goal is to find the w satisfying the condition that
the determinant of (7) is zero, so that R; # 0. But then
U(Z) should be a nonzero polynomial in Z. Thus, the

w satisfying (7) are the ones that allow U(Z) to be a
nonzero polynomial. This last condition will lead to
the determination of w in the next section.

2.3. The Method of Characteristics

Our goal is to solve (10) which is a linear partial
differential equation (pde) of the first order in m
variables. We will use a well known method, the
method of characteristics, from the theory of pde’s in
order to solve it. We form the following system of
ordinary differential equations.

dz, _
(1 =wghz — (1 — gz
dz,
T —wqmn + oz — (1 - 0wz
dz., _du)

= = = 11
—Wumzi + pmz,  XUZ) 4o

which can be written as

dz

— =Anz 12
dt m ( )
where A, is the m X m matrix
Ay =
Wit —(1— g 0 0
Wi ks H2 (I —g)pa . . 0
TWGm—1 Bm—1 0 et —(1 = Gt Y-t
Wi 0 .. 0 o

To solve the system (12) we first find the eigenvalues
of A,, using Proposition 1 below.

Proposition 1. The eigenvalues of matrix A,, are the
mroots 0(x)i=1, ..., mofthe equation

S0/ 7(—0(x)) = L. (13)

Proof. We first prove that
| Am — 01 = (1 — wfA(=0) [T (w — 0).
J=1

Obviously
| Ay — 0l = —wq py + puy — 6.

Noting that A, , is the principal minor of order
r — 1 of 4,, we expand the determinant | A, — 07|
along the last column to find

|4, — 61} = (u, — 0)] A,y — 61}

r—1

= Wq,p, 2 (1 - QJ)/-L_/-

J=1
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We devide by ] /-1 (&, — 9) and take

|4, — 01| wgn o (1= g
da2r Tl g .
TP S |

Solving this recurrence we find

m

E Wqr - = (1-¢ )H-/ ]

d,=d —
1 =02 w—0
But since
A, — 0
dl — !__.1_,.__| — 1 — _M
o — 0 o — 8

we find that

r—1

- qri, (1 - q)ﬂ
do=1—w § St Ty L=
=1 Mr =1 My

1~ wf¥(=0).

Therefore

| A, — 01 =(1 — Wf’;s(“ﬂ)) I:I (&, — 9).

The eigenvalues of A, are the roots of the equation
(1 = wf(=0)) = 0
which combined with (9) gives (13).

Therefore, from (12) and (13) we find

m

=Y c,e" i=1,....m (14)
=1

where C, 2 [c1,, . .., m,]7 is the eigenvector of matrix
A, that corresponds to the eigenvalue 8, (x). Also from
(11)

U@E()) = Ce". (15)

Since C, is an eigenvector of A4,, its components ¢, ,,
..., Cm, are multiples of ¢, , and thus

Cl.j = al,jCl.jy al.j é 1

where 4, , are found from 4,,C, = 6,(x)C, to be

m

a —_—wz el ri](l_QI)'ul.
" r:zﬂr—gj(x) I=1 #/_Bj(-x)

From (15) we find that

- 1/%
e

and thus

o = U'(E) 0,(3)/\
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As a result, (14) becomes
z= ) ba UG i=1,...,m
=1

where b, & ¢, ,/C»" (b, are still undetermined).
We solve this system for the m coefficients b,

(j=1,..., m)using Cramer’s rule and we find that
1 e 1 Z) 1 PR 1
az, e a J—1 2 a?.,_/—l . a?,.m
am.l e e alVl._}"l Zm am.j+l v am‘m
b =
| S 1 l L e 1
az ... a2<_}*l aZ.J a2.]+1 .. Qo m
am.l v . amvj-l am,j am,/+l LR am,m
- U@ (16)
This means

b= (b,zi + ...+ by, z) UGN ",
j=12,....m

where b,, can be computed analytically from a,, by
expanding the subdeterminants in (16). As a result

cn 1
[U(Z)]of(\)/\ = E/ (b].jZ| + ...+ bmJZm)

(J=1,....,m). (17)

We want to find a general solution of (10), which
satisfies the condition that U(Z) is a multivariable
integer polynomial of z,, . .., z,, of degree s.

Raising (17) to some integer J, and multiplying these
m equations we find

[U(Z)] 5 )/
(4]

=K [ b,z + ...+ bn,z,.) (18)
7=1

where K & [[/2, 1/(b,)" is an undetermined constant,
independent of z,, . .., z,.

Clearly (18) satisfies (10). For U(Z) to be a multi-
variable integer polynomial of Z of degree s we demand
2EOOL_ v o ez (19)

X oy
Therefore, if the above conditions hold, we have found
a solution of (10) that satisfies the polynomiality con-
dition. Hence, the generating function U(Z) that cor-
responds to the combination = (i, .. ., i,,) is of the
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form

Uiz =K Il (bi,zi + ... + bz, (20)
J=1

Let us summarize what we have shown up to this
point. Our goal was to find the w satisfying the con-
dition that the determinant of (7) is zero, so that the
system of (7) has a nonzero solution. This last condi-
tion is, in turn, equivalent to the condition that the
auxiliary generating function U(Z) is a nonzero mul-
tivariable polynomial. Solving for U(Z) and imposing
the condition that U(Z) is a nonzero multivariable
polynomial lead to (19), which are the equations that
the x, and thus the w = [ (x), satisfy.

Thus in order to find w one proceeds as follows. Fix
one of the (**7') vectors { = (i, ..., i,) such that
2.7%1 I, = 5. First one solves the following equation
for x.

d)f(x) é ilol(-x) + i202(x) +...+ imem(x) = X,

h+bh+...+i,=s (21)

Here the 6,(x) (j =1, ..., m) are the m roots of the
polynomial equation of degree m
SO 5(=0,(x) = L (22)

Now w=f7 (x). Asall | w| > I should be disregarded,
we are only interested in the roots x that satisfy

Tl <L (23)

In the next section, we prove that if p < 1 for each
of the (**7~') combinations of the vector 7, such that
|i| = s, there is exactly one root w inside the unit
circle (| w| < 1). Therefore, there is a total of (**77")
roots w and each is characterized by the system of
equations (21), (22) and (23). Note that each root w
satisfies a different equation. Thus, the use of the
generating function enables us to completely charac-
terize the equation that each root w satisfies.

2.4. The Basic Separability Theorem

In order to investigate the number of roots of (21) we
prove the following theorem.

Theorem 2. If p < 1, for every of the ™'Y combi-
nations of i, | i| = s (21) has at least one root x that
satisfies (23).

Proof. First we prove that there are no roots x such
that

Re{x} < 0.

If Re{x} < O then from (21) there exists a j (1 < j <
m) such that Re{d,(x)} < 0. Then

' f eV (t) dt
0

f | e | fr () at
0

(2

1/7,1=6,()}]

N

= f eRNL (1) dt < 1.
(¢}

Therefore, combining the above strict inequality and
(22), we conclude that since f75, (x)f7.(—0,(x)) = 1,
then |f%(x)| > 1. Therefore, the assumption
Re{x} < 0 violates (23), and hence, there are no roots
X such that Re{x} < 0.

We will prove that for every combination / there
exists a root x in the right half plane (Re{x} = 0)
which satisfies the system of equations (21) and (22)
using the following fixed point theorem.

Schauder Fixed Point Theorem (see Hale 1980,
p. 10). Every continuous function f(x) defined from
a convex, bounded and closed region into itself
has a fixed point x,, i.e., there exists an X, such that

S(x0) = Xo.

We will prove that there exists an M such that
¢:(x) defined in (21) has a fixed point in the region
Dy, & {x: Relx} 2 0, | x| = M}, in other words, that
there exists a root x in the right half plane.

Proof. Clearly D,; is convex, bounded and closed
(compact). Also, all functions ¢,(x) defined from (22)
are continuous because they are roots of a polynomial
equation, where all coefficients are continuous func-
tions of x. Therefore, ¢;(x) is a continuous function
because it is a linear combination of continuous func-
tions. In order to complete the proof that there is a
fixed point it suffices to prove that there exists an M
such that ¢;(x) takes values in D,,. From (22), we
have that for every j = 1, ..., m Re{f,(x)} = 0
because if Re{f,(x)} < 0 then

|f41-6,00))| & f T g (ydt] < 1.
Also

/%)) 2 J:o e fr(t) dt| < 1.
Then

LT, =0,(0)] < 1

T Copyright © 200 T Al RightsReserved



and, therefore, (22) cannot possibly be satisfied. Thus
Re{¢i(x)} = 0.

We can claim that there exists an M such that
| 6,(x)] = M, & M/s. If not, for all M there existsa y
such that | 6,(y)| =2 M., that is, 6,(x) tends to infinity
as x — y. Since lim,, ... f T.(x) = 0, then from (22) in
order for the product £ (x) fF.(—#8,(x)) to be nonzcro,
—6,(x) must tend to a pole of f7.(-). Thus
|1i|m 6(x)=w, jJ=1,....m
which means that 4,(x) is bounded at infinity. There-
fore, y is finite and
lim 8,(x) = o
which contradicts the continuity of 8,(x). Therefore,
there exists an A such that | §,(x)| < M/s and there-
fore from (21) | ¢;(x)| < M, which proves that ¢;(x)
is from D,, into D,,, and thus, since D,, is convex and
compact, has a fixed point in D,,. Therefore, we have
shown that for every combination of 7 there exists a
root of the system of (21) and (22). Furthermore, if
Refx} = 0, x # 0 then | f¥ (x)| < 1. Yet, the solution
x = 0 is not excluded. In fact, for i = (0, ..., 0, )
x = 0 is a solution to (21) and (22). If there are two
nonzero components i, i, of the vector i, we can easily
check that x = 0 cannot be a solution to (21) and (22).

Therefore, in order to prove the theorem, we are led
to the investigation of the roots for the /» combina-
tions of / where m — | components are 0 and one is
equal to s. Using the following well known (see
Volkovysky, Lunts and Aramovitch 1977, p. 107)
implication of the argument principle from complex
analysis, we prove that, when p < 1, then these roots
are unique and nonzero: Let ¢(z) be a meromorhic
(analytic except poles) function in the domain G,
which is analytic on its boundary C. If | ¢(z)] < 1 on
C, then the number of roots of the equation ¢(z) = 1
in the domain & is equal to the number of poles of
the function ¢(z) in that domain.

Then, (21) becomes

h(x) & fz(x)f;:(— f) =1

We will apply the above result in the domain E; of
Figure 2. We prove that | A(x)} < 1 in the boundary
of E,. Then

l. Refx} =0 (x=ia#0)
We easily get that | /7 (x)| < I and | f7.(—x/s)| <
1 from where

| A(x)] < 1.
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A
v

Figure 2. The domain E|.

2, Refx} >0 [x|=L—oo
Then lim,, —/% (x) = 0 and lim;, ../ 7.(—x/s)
= (. Thus, for | x| = L for some big enough /. and
Re{x} >0

| h(x)| < 1.
3. x—0*

Using a Taylor expansion we find

F1E =1 =1 + o)

f’i(— )—C) =1+ ﬁ + o(x).

s

Thus

| A(x)| = \ l —x(i—i>+0(x)

<1l ifp<l.

=‘l—)—;(1——p)+0(x)

Since the function /2(x) is meromorhic in E,, ana-
lytic in the boundary of E, and satisfies | 2(x)] < | in
the boundary, the number of roots of 4(x) in E, is
equal to the number of poles of A(x) in E,, which is
exactly m, because /7, (x) does not have poles in E,
and f7.(—x/s) has exactly m poles. These m roots
obviously satisfy (23) because Re{x} > 0.

Since we have proved that there are no roots for
Ref{x} < 0 we conclude that if p < 1 (21) has exactly
m roots that satisfy (23), for the m combinations of 7
where m1 — 1| components are 0 and one is equal to s.
Combining the result and the general proof that there
exists a root for every combination of 7, we conclude
that for every combination of the type i=(,...,0,
5, 0, ..., 0) there exists a unique root if p < 1. As a
result, we conclude that if p < 1, for each of the
(**7'y combinations of i, | 7| = s, (21) has at least
one root x that satisfies (23).

Up to this point, we have established the existence
of a root x that satisfies (21), (22) and (23) for every
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combination of . Furthermore, we have shown that
for a particular type of combination : this root is
unique, provided that p < 1. Under the condition that
these roots are distinct and because there are (**7')
combinations of i, ..., i, such that 37, i, = 5, we
proved that there are at least (**7 ") roots of (21). This
condition is clearly almost always satisfied, in the
sense that the subset of distributions for which this
condition does not hold has Lebesgue measure O.
However, we have not been able to construct any
example in which this condition is violated. We con-
Jjecture that this condition will always be satisfied. In
fact, we were able to prove this for the special case
m = 2 (Bertsimas 1988). For m = 1 this condition
holds from the well known G/M/s theory (see also
special case 3 in Section 2.5).

We did not prove the uniqueness of the roots x in
the general casc using results of the present theory
exclusively, but this is seen to hold by combining the
result of Theorem 2 and the results of Pollaczek, who
showed that the waiting time distribution for the
G/C,./s QS is a mixture of at most (**7') exponential
terms, which implies that there are at most (**7')
roots of (7). Bertsimas shows that if there are ¢ roots
of (7), then the waiting time distribution is a mixture
of t exponential terms. Furthermore, de Smit (1983a)
proved that under some conditions, which do not
seem to have some probabilistic meaning, and using
a matrix generalization of Rouché’s theorem, if p < 1
there are (**7""!) roots for the G/H,,./s QS.

As a result of the above discussion, we conclude by
combining our result of Theorem 2 and the results of
Pollaczek and de Smit that there are exactly (**77')
roots of (7), provided that p < 1. Furthermore, these
roots satisfy (21) and (22). It is remarkable that the
equations for the roots w depend only on the Laplace
transforms of the interarrival and service time
distributions.

In order to prove the uniqueness of the roots x for
every combination of 7, using the results of the present
theory exclusively, one might use Rouché’s theorem,
but the problem arises that the functions 8,(x) defined
from (22) might not be analytic. In Section 2.5, we
examine some special cases in which we were able to
prove the uniqueness of the roots w using the present
theory exclusively.

Remarks

1. Since we proved that there are (**7"') roots w that
correspond to the (**77') combinations of [ =
(¢, ..., im) such that 3%, i, = 5 we label these
roots w, (j= 1, ..., (™7 ")). We denote by D,,,
R;, the coefficients corresponding to w,. Also, U,(Z)

denotes the generating function corresponding to
w,. Then from (20) U,(2) is given by

(]J(f) = I<J H (er( w, )Zl +...t bm.r( W, )Zn1)"~ (24)
r=1

From the definition of

UZA Y Rz, .z

lel=3s

the coefficient of z;, is equal to R, ),. From (24)
the coefficient of z3, is equal to

Kbj.(w) ... biwm(w,).
Thus

Uf2) = R, NN H
r=1

bl,r(W/ )2+ .+ bm,r(wj )Zm "
‘ ( b)) ) -2

2. This above analysis explains the title of Section
2.4. We proved that there are (**7"~") roots w,, each
of which satisfies a different equation, correspond-
ing to the (**7"') combinations of , such that
| {| = s. This separability property of the equations
from which the roots w, can be computed is theo-
retically interesting because the equations for the
roots w, involve only the Laplace transforms of the
interarrival and service time distributions, but is
also computationally useful.

2.5. Some Special Cases

C,/C,/1. Since the only combinations of 7 for
s=1lareofthetype i = (0,..., 1, ..., 0) we have
already proved that there are exactly a(l, m) = m
roots if p < 1.

If we permit complex transition rates (A,, u,) the
proof is still valid, but the poles of f7.(—x) are not
necessarily on the real line anymore (see also Remark
3 in Section 2.6). For computational purposes, it is
interesting to investigate when these m roots are real
or complex. We assume first that the m poles of the
service time distribution are distinct and there are
no zeros of f7F (x) that coincide with any pole of
S7(=x).

If g(x) & f7.(x)[F.(—x) — 1, then lim, .o+ g(x) =
—x(1 — p)/A < 0 for x > 0 and lim,_..g(x) = —1.
Graphically g(x) is presented in Figure 3. We observe
in the figure that all the m roots are real. If there are
zeros of f%.(x) that coincide with poles of f7 (—x),
then there may be roots that are complex.

If the poles of /7 (—x) are not distinct, then there
may be roots that are complex. Consider for example
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Figure 3. g(x) with all m poles of /% (—x) real.

the case of C,/E, /1. In this case, g(x) is presented
in Figure 4. If m is odd then there is only one real
root (Figure 4). If m is even then there are 2 real roots.
As a result, since the algorithmic complexity of the
determination of the roots increases if the roots are
complex, we can say that the algorithmic complexity
increases when the service time distribution becomes
more homogeneous (£, for example, in the sense
that the rates of the stages are the same).

E,/E../s. In this case (22) becomes

(o) () -
kX + x/ \mp — 8,(x) B

f— 1) k/mt
mse=m oo )

i=1,...,m (26)

Substituting (26) to (21) we get

NS (2-Di
snm—rny(m) » ljexp<—lr—(jm—) =x
=1

If we define

m 2 . - .
aéZEﬂ%lg—ﬂa(hd<ﬂ
=1 m

9(z)

Figure 4. g(x) with only 1 pole of /¥ (—x) real.
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then we must solve

kX

A/
X — smu + WZM(KI‘;) e; = 0.

We apply Rouché’s theorem in the domain £, of
Figure 2. Then for | x| = L — »

kn \M7
‘mu<m) e| <smu<|x—smul.
In particular, forx=0and { = (5,0, ...,0),...,{=
©, ..., 0, s), the above strict inequality becomes

equality. Thus, in order to have the required strict
inequality so that we can apply Rouché’s theorem, we
consider a small semicircle and use a Taylor expansion
to take as x — 0" with Re{x} >0

A\
I+ x)

sm;u(l _ X + o(x))‘ < |x - smp}
Am

if p <.

In the boundary x = ia # 0 one can verify after
straightforward algebraic manipulations that the
above strict inequality holds.

Thus, if p < 1, we conclude from Rouché’s theorem
that for each ¢; there is a unique root in £,, which
satisfies (23). Furthermore, since we have proved that
there are no roots for Ref{x} < 0 and the radius L of
the domain E, can get arbitrarily large we conclude
that if p < 1 there is a unique root for every combi-
nation of { that satisfies (23).

C/M/s. For m =1 we find that (22) becomes

X
fﬂﬁﬁﬂﬂ=1=x=mu~ﬁp»
Then w is the unique real root of the equation

w = [T (su(l — w))

which is the well known result from G/M/s theory.
At this point, we remark that our result which was
obtained for the class of Cj interarrival distributions
is still valid for a general distribution. This observation
comes to support the conjecture in Section 3 that our
solution is still valid even for the G/R/s QS.

E./C,/s. This QS, which was studied by Bertsimas
and Papaconstantinou (1988), has the very attractive
property that all the a(s, 2) = s + 1 roots are real and,
thus, the algorithmic complexity of this QS is low. In
fact, an O(s?) real arithmetic algorithm was proposed.
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2.6. General Remarks

1.

We will investigate under which conditions we can
find an explicit equation for x, in the sense that
(21) i1s an implicit equation involving the functions
6,(x)(j=1,...,m), which are not known explic-
itly. This property is algorithmically useful because
an explicit equation for x can be solved easily by
numerical means. We exploit the fundamental re-
sult in the theory of polynomial equations. Since
(21) is a polynomial equation for #(x) (which has
m roots, #,(x), ..., 6,.(x)), a closed-form expres-
sion for 6,(x) can only be found for m < 4. For
m = 5 we cannot, in general, find an explicit
formula. For example, for m = 2 the s + 1 roots

x(w,) (w, = f7,(x(w,))) satisfy
(s = 2/)VAUT(0)) = 5w + p2)
+ qusu fT,(x(w))) + 2x(w)) = 0,
j=0,...,58
where

A(y) & Q) y.

The complexity of the problem increases extremely
fast with the number of roots, which increase ex-
ponentially in s, rn, when both s, m vary. For this
reason, it is better to use low values for m (m = 2,
3, 4) to approximate a service time pdf that avoids
the venture of determining exponentially many
roots. In the opinion of the author, in a practical
situation the value of m = 2 is a tradeoff between
accuracy and simplicity, which has the additional
advantage of the rather unexpected real arithmetic.

(h2 =y + Y@ + dpypo(l —

. In the attempt to investigate Cox’s idea of intro-

ducing complex transition rates, to obtain com-
plete generality in synthesizing any pdf with
rational Laplace transform, we observe from the
general proof that there are (" * ™ ~ ') roots of (21)
that did not depend on the assumption that u,,

<y Mm OF Ay, ..., A are real. Since, in order
to have a valid pdf with complex poles we need
m > 2, the simplest multiserver model involving
complex transition rates is Ci/Cs/s, which has
[(s + 2)(s + 1)]/2 = O(s*) complex roots.

. A promising idea lies in the exploitation of an old

and widely used idea in the field of Electrical
Engineering, namely transfer functions. By reduc-
ing the order of a transfer function, which corre-
sponds in queueing theory terms to the rational
Laplace transform of the pdfs, we can find an
excellent approximation of a large order pdf by a
low order pdf. This decreases tremendously the
algorithmic complexity of the problem.
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2.7. The Algorithm for the Unsaturated
Probabilities

Returning to the assumed form of the probabilities
Poin=sl=1,...,k |i| =swe observe that the
most general solution under the condition that the
roots w, are distinct must be

a(s.m)

nll 2 D/j ") j

where from (8)

/e — DI
_DIJH Dr)

— =2,k
r=1 x(WJ)+ )\r+l

and R;, satisfy (7). For each ; corresponding to
the root w, the coefficients R;, satisfy a system of
a(s, m) = (** 7~ ') linear homogeneous equa-
tions (7). Thus, for a fixed j we can find the ratios
R;,/Ro. 09,2 f (i, w,) recursively from (7). In order
to determine the saturated probabilities only the coef-

ficients B, 2 D, , R, . o.,),, Temain unknown. Therefore

als.m) r}\
Pu='3 (T 1=2)

L, w)w"
J=1 r‘lx(wj)'{h}\’*'l)f( j) !
[=1,...,k,

Furthermore, from (25) we observe that the generating

function of (i, w,) is

@) = X fU,w)zr. ..z
Ro. 9, 17l=s

7 (buw)z + .+bm,,(w,)zm>"
‘H< B (W,) ‘

n=s, 7] =s.

G@)=g" -

(28)

Up to this point the only remaining unknowns are the
coefficients B, and the unsaturated probabilities P, ;,
n<s I=1,...,k || = n Thus, we have reduced
our problem to one with a finite number of unknowns.
There are two strategies for finding these unknowns.

Strategy A

1. Using (2a) for n < s we express the unsaturated
probabilities P,,; as linear combinations of the
coefficients of B,, that is, finding recursively from
(la) and (2a) the coefficients g(n, /, i, j) in the
expansion

a{s,m)

nlt: 2

Bgn I, i, )

n<s, I=1,...,k |il=n(29)

Thus after this step only the coefficients B,(j = 1,
, a{s, m)) remain unknown.




2. Using the identities P, ,.; = 0 n < s, Ifl =

we find

507

linear homogeneous equations for B,. Selecting
(* * 7 = 'y— 1 of them and using the normalization
equation

Y Pui=1 (30)
nd,i

we find a linear nonhomogeneous system of
a(s, m) equations with the a(s, m) unknowns B,.

Strategy B

Thereare k32 (* 7~ y=k( " ") unsaturated
probabilities P,,;and (* * 7' ~ ') unknown coefficients
B,. Using (1a) and (2a) for n<swefind kC 77~ ")
equations for P,,;. Also, the equations (1) for l =1
and # = s give another (* * * ') equations that
involve the unknown quantities P,;; (#n < s) and B,.
So, we have a linear homogeneous system of
kCYr7 ") + (477~ ") equations with the same
number of unknowns. Using the normalization equa-
tion (30) we find a linear nonhomogeneous system,
which can be solved by numerical methods.

3. THE SYSTEM-SIZE PROBABILITY
DISTRIBUTIONS AND THE USUAL
PERFORMANCE MEASURES

In this section, we find closed-form expressions for
the quantities P,, P, ;, P,, P; (see Section 1.1 for the
definition of these quantities) for # = 5. Also closed-
form expressions are provided in Section 3.2 for the
usual performance measures.

3.1. System-Size Probability Distributions
Concerning the distribution of N we state the following

proposition.

Proposition 3. The general-time probabilities of the
number of customers in the system have the form

a(x )

P )ﬁi(i(;v—’)(l—w,)wf ifnss
Pu=1 31)

a(s,m)

ZBZZg(nlzj) ifn<s

\jl [l|’| =n

where G,(1) = 3,71, f(1, w,).
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Proof. In general

= i 2 P,

=11 ;|=1n|n(n,\)

Then for n = s, using (27), we take

a(s.nm) k
= 2 <2 DM)( 2 Rl'J)wan
J=1 {=1 Jel=s

But ¥,;-, Ri, = U,(i) = G(1)R, ., from the defi-
nition of the generating function U,(Z) and by using
(28). Also from (8)

k
> Dy,
=1

ko=

=D1JZH——_“&))\—

=1 r=1 x(wj) + >\r+l

AL+ x(w)

=D 1 -
1. X(M/J ) ( WJ)
where we have used the identity
k -1
DA 1 —p)A\,
w=50em ) = 3 2 [ L)

i x(w) + N0 x(w,) + A

Therefore

a(s,m)

P, = 2 Dy,

=1

A+ x(w)
x(w,)

UMWl —w) azs (32)

Using the definition of B, = D, Ry, 0., (31) follows
for n = 5. For n < s, using (29), (31) follows easily.

Conjecture

Although the method of stages we present is not
immediately extendable to distributions, which do not
have rational Laplace transform, we believe that this
separability property holds for the more general model
GI/R/s, but does not hold for GI/G/s where G for the
service time pdf does not belong to the class R. The
reason for this difference is that it is the structure of
class R and its probabilistic interpretation that enable
us to separate the equations for the roots w,. Sum-
marizing, we conjecture that for the GI/R,,./s QS

s+m—1
P,= 3 Lw' n=zs

J=1
where w, are the (* * 7 ~ ') roots of the system of
equations

w=/fT() (Iw] <1

Y i,6,(x) =x suchthat ), i =s

ST 7(-6.(x)) =1

Concerning the prearrival probabilities we prove the
following proposition.

(i=1,...,m).
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Proposition 4. The prearrival probabilities P;;, P,
and the post-departure probabilities Py for n = s can
be expressed as

a(s,m)

Pri=s Y B w0+ x(w, )wr !

v

nzs, |il=s (33)

a(s,m)

P, =P;=- Y BG()
x4

S+ x(ww!™ nz=s (34)

Proof. If we define the event AAO 2 arrival about to
occur in (z, ¢t + 6¢) then we take

P, ;=PriN=n,R=1i| AAO}

_PrifN=nnR={NAAQ)
B Pr{AAQ}

_Pr{UL, (N=nNR=INR,=1)NAAO}
Pr{U%, R, =INAAO}

SEPHAAO|N=nNR=INR,=1}
-PriN=nNR=iNR,=]}
Y5, Pr{AAO | R,=}Pr{R, =}

But since
Pr{AAO|N=nnNR=[{NR,=1)

and
_ . (1/)\/) er(:[ {pr Hm 1 (1 pm)}
PriR, =1} = I/x
we take
pPoo= Z;(1>\/P1Pn1i
! )\IPIO\/A/)Z lgerm 1(1 pm)}
2%2 NpiPosi (35)

-~

=1

since ZLI D Z¢=l {pr Hm 1 (1 - pm)} = 1.
Therefore, using (27) and (35) we have

1 a(s,m) ls.‘
X {Z A/P/D/,/} RIJWJ . (36)
=1

Js=1

P =

Also from (8)

k /-1
(I = pIM
D N piD —_—
[gl )\/17/ Ly = 2 117/ by H (\'V ) + }\r+1

=D\, (A + x(w, )w,.

Thus from (36), (33) follows. Also
> Pu

17]=s

a(s,m)

== 2 B\ +x(w 0w ¥ fi,w,)

Vil=s

From Y ; -, f(i, w,) = G,(i) and the general relation
P, = P, which holds for the GI/G/s QS, (34) follows.

3.2. System Performance Measures

Mean queue length

If L, is the length of the queue then
E{L,} =Y (n - s)P,. (37)

We substitute (31) into (37) and find
a(s,m)

EiLy= Y BGOHNTXW)  wl g

x(w,) 1 - W,

Proportion of time all servers are busy, P,

INok:

Pbusy = Pn

n=s

a(s,m)

Y BG,i) M0 (39)

x(w)
Probability of nonzero waiting time

Pr{T, > 0}
1 a(s.m) s+1

=3 Pi=1 "% BG ) +x(m)

n=s J=1 J

i

(40)

4. COMPUTATIONAL AND COMPLEXITY
CONSIDERATIONS

Strongly critical remarks have been made in the past
both on the merits of queueing theory (see e.g., Neuts,
p. 42) and on unwarranted algorithmic claims in the
applied literature on stochastic models. Being fully
aware of the need for the probabilist to be closely
involved with the algorithmic analysis of a problem,
we have undertaken the task of programming and
testing our algorithms.

4.1. The Algorithm

In order to extract numerical results from the formulas
presented in Sections 2 and 3 we propose the following
algorithm based on Strategy A (see Section 2.7).

1. Determination of (° * ;* ~ ') roots w, of the system
of (21), (22), (23), and (9). N
2. Determination of the coefficients f(i,w,) from (7).
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Table I
Computational Requirements for the Solution of
the Ck/Cm/s
Step of Time Memory
Algorithm Requirement Requirement
() O(a(s,m)) O(a(s,m))
(2) O(a’(s,m)) O(a*(s,m))
(3) O(k? a’(s,m)) O(ka*(s.m))
“) O(a’(s.m)) O(a’(s,m))

3. Determination of P,,; for n < s as linear combi-
nations of B,.

4. Determination of the (" * " = ') unknowns B, as
a solution of a linear system with (* *7 ~1')
equations.

4.2. Complexity Considerations

In Table I we show the computational complexity of
each step of the algorithm with respect to memory
and time requirements. From this table we can make
the following observations. Since from a computa-
tional point of view the heaviest part of the algorithm
is the third step, the time complexity of this algorithm
is O(k*a’(s, m)), which for fixed 1, is polynomial in
the number of servers s and for fixed s, is polynomial
in m. The algorithm is exponential if both s and m
vary, but it is always polynomial in k. These results
verify that the complexity of the analysis of the
C/C,./s QS increases much faster with the service
time than with the interarrival time pdf. That is, we
expect that the derivation of numerical results for the
M/C,./s QS is much harder than for the C,,/M/s QS,
for example.
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4. this model allows the determination of exact results
when the coefficients of variation of the interarrival
and of the service time pdf are both greater
than .

Merely as an illustration of the stability and accu-
racy of the present algorithm, Table II presents a few
typical results for the C,/C,/15 case with p = 0.9 and
the conditions uy = 2u, g, = | — 1/VZ, pp = p,(1 —
g)s M =20 pr=1 = 1/Vi =Xl = p) (two
moment-fit; V2, VI are the coefficients of varia-
tion of the interarrival and service distributions,
respectively).

4.4, The Numerical Solution of the E,/C,/s QS

This QS is solved by Bertsimas and Papaconstantinou.
In order to illustrate the dependence and the sensitiv-
ity of this algorithm on k we prepared another pro-
gram in FORTRAN on a CYBER 171 for the analysis
of the E,/C,/s QS.

After careful tests of our computer programs we
produced extensive numerical results for a wide range
of the parameters s, p, k, u1, u» and ¢ which are in
agreement with the results of Groenevelt et al. for the
M/H./s and M/E, »/s and of de Smit (1983b) for the
M/H,/s, E;/H,/s and Es/H,/s systems. In particular,
the algorithm was tested for values of V2 up to 100,
for values of k up to 50 and for values of s up to 40.
In all cases, the algorithm produced reliable results as
it satisfied all the internal accuracy checks.

In Table III we illustrate the dependence of the
mean waiting time p £{7,} (in units of mean service

Table 111
4.3. The Numerical Solution of the C,/C./s QS nE{T,) for the E,/C,/15 QS as a Function of
2 _ 2
To fully gauge the performance of the proposed algo- Va=1/k V3
rithm we programmed it in FORTRAN on a SUN 3. Vi L
The reasons we selected this model are K 0.5 0.8 2.0 5.0 100
s . . 1 0.3067  0.3647 0.5784 10810 1.8902
1. it is fepresentatlve of the general behavior of the 5 01124 01661 03685 08558 16507
algorithm for more general models; 10 00909 0.1431 03431 0.8279  1.6207
2. it is in real arithmetic; 15 0.0839 0.1356 0.3347 0.8186 1.6107
3. its complexity O(SB) is not very high: 20 0.0805 0.1319  0.3305 0.8140 1.6057
Table 11
wE{T,} as a Function of V2, V2 for the C,/C,/15 QS
Vi
Ve 0.5 0.8 2.0 5.0 10.0 50.0
0.5 0.1816 0.2375 0.4489 0.9498 1.7542 7.9025
0.8 0.2561 0.3133 0.5283 1.0334 1.8416 8.0838
2.0 0.5677 0.6259 0.8472 1.3662 2.1889 8.5139
5.0 1.3939 1.4490 1.6620 2.1953 3.0519 9.5035
10.0 2.8251 2.8676 3.0575 3.5764 44513 11.0235
50.0 14.5984 14.6074 14.6636 14.9542 15.6819 22,7259
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time) on k for the model E;/C,/15 (p = 0.9, p, = w2
for V2 < 1 and ¢, = u,/(u + w2) for V5 > 1). This
selection of parameters coincides with that of
Groenevelt et al. but differs from de Smit’s (1983b).
Observe that the numerical results as k increases
converge quickly to the corresponding limiting (for

] T
1909 C?U secords

k — «) D/C,/s and thus render any computa-
tions for k greater than a certain small value almost
unnecessary.

Finally, in Figure 5 we present the computational
times in CPU seconds on a CYBER 171 as functions
of k and s.
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Figure 5. Computational times in CPU seconds for the E./C,/s QS on a

CYBER 171.
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